I am a research scientist at Google DeepMind, London.
I am interested in design and analysis of learning algorithms, with emphasis on theories of generalization, uncertainty estimation, and concentration inequalities.
You can contact me at firstname.lastname@gmail.com
Tech reports
Pointwise confidence estimation in the non-linear ℓ²-regularized least squares
I. Kuzborskij and Y. Abbasi-Yadkori
arXiv. June, 2025.
[PDF]
[Bibtex]
@misc{kuzborskij2025pointwiseconfidenceestimationnonlinear,
title={Pointwise confidence estimation in the non-linear $\ell^2$-regularized least squares},
author={Ilja Kuzborskij and Yasin Abbasi Yadkori},
year={2025},
eprint={2506.07088},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2506.07088},
}
Low-rank bias, weight decay, and model merging in neural networks
I. Kuzborskij and Y. Abbasi-Yadkori
arXiv. February, 2025.
[PDF]
[Bibtex]
@misc{kuzborskij2025lowrankbiasweightdecay,
title={Low-rank bias, weight decay, and model merging in neural networks},
author={Ilja Kuzborskij and Yasin Abbasi Yadkori},
year={2025},
eprint={2502.17340},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2502.17340},
}
Mitigating LLM Hallucinations via Conformal Abstention
Y. Abbasi-Yadkori, I. Kuzborskij, D. Stutz, A. György, A. Fisch, A. Doucet,
I. Beloshapka, W.-H. Weng, Y.-Y. Yang, Cs. Szepesvári, A. T. Cemgil, N. Tomasev
arXiv. April, 2024.
[PDF]
[Bibtex]
@misc{yadkori2024mitigating,
title={Mitigating LLM Hallucinations via Conformal Abstention},
author={Yasin Abbasi Yadkori and Ilja Kuzborskij and David Stutz and András György and Adam Fisch and Arnaud Doucet
and Iuliya Beloshapka and Wei-Hung Weng and Yao-Yuan Yang and Csaba Szepesvári and Ali Taylan Cemgil and Nenad Tomasev},
year={2024},
eprint={2405.01563},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
Learning Lipschitz Functions by GD-trained Shallow Overparameterized ReLU Neural Networks
I. Kuzborskij and Cs. Szepesvári
arXiv. December, 2022.
[PDF]
[Bibtex]
@misc{kuzborskij2022learning,
title = {Learning Lipschitz Functions by GD-trained Shallow Overparameterized ReLU Neural Networks},
author = {Kuzborskij, Ilja and Szepesvári, Csaba},
howpublished = {arXiv:2212.13848},
year = {2022},
pdf = {https://arxiv.org/pdf/2212.13848},
url = {https://arxiv.org/abs/2212.13848}
}
Efron-Stein PAC-Bayesian Inequalities
I. Kuzborskij and Cs. Szepesvári
arXiv. September, 2019.
[PDF]
[Bibtex]
@misc{kuzborskij2019efron,
title = {Efron-{S}tein {PAC}-{B}ayesian {I}nequalities},
author = {Kuzborskij, Ilja and Szepesvári, Csaba},
howpublished = {arXiv:1909.01931},
year = {2019},
pdf = {https://arxiv.org/pdf/1909.01931},
url = {https://arxiv.org/abs/1909.01931}
}
Publications
To Believe or Not to Believe Your LLM
Y. Abbasi-Yadkori, I. Kuzborskij, A. György, Cs. Szepesvári
Conference on Neural Information Processing Systems (NeurIPS), 2024.
[PDF]
[Bibtex]
@inproceedings{yadkori2024tobelieve,
title="To Believe or Not to Believe Your LLM",
author={Yasin Abbasi-Yadkori and Ilja Kuzborskij and András György and Csaba Szepesvári},
booktitle={Neural Information Processing Systems (NeurIPS)},
year={2024}
}
Better-than-KL PAC-Bayes Bounds
I. Kuzborskij,
K.-S. Jun,
Y. Wu,
K. Jang,
and F. Orabona
Conference on Learning Theory (COLT), 2024.
[PDF]
[Bibtex]
@inproceedings{kuzborskij2024better,
title={Better-than-KL {PAC-Bayes} Bounds},
author={Kuzborskij, Ilja and Jun, Kwang-Sung and Wu, Yulian and Jang, Kyoungseok and Orabona, Francesco},
booktitle={Conference on Learning Theory (COLT)},
year={2024},
}
Mixture Weight Estimation and Model Prediction in Multi-source Multi-target Domain Adaptation
Y. Deng,
I. Kuzborskij,
and M. Mahdavi
Conference on Neural Information Processing Systems (NeurIPS), 2023.
[PDF]
[Bibtex]
@inproceedings{deng2023mixture,
title={Mixture Weight Estimation and Model Prediction in Multi-source Multi-target Domain Adaptation},
author={Deng, Yuyang and Kuzborskij, Ilja and Mahdavi, Mehrdad},
booktitle={Neural Information Processing Systems (NeurIPS)},
year={2023}
}
Tighter PAC-Bayes Bounds Through Coin-Betting
K. Jang,
K.-S. Jun,
I. Kuzborskij,
and F. Orabona
Conference on Learning Theory (COLT), 2023.
[PDF]
[Bibtex]
@inproceedings{jang2023tighter,
title={Tighter {PAC-Bayes} Bounds Through Coin-Betting},
author={Jang, Kyoungseok and Jun, Kwang-Sung and Kuzborskij, Ilja and Orabona, Francesco},
booktitle={Conference on Learning Theory (COLT)},
year={2023},
}
Stability & Generalisation of Gradient Descent for Shallow Neural Networks without the Neural Tangent Kernel
D. Richards and I. Kuzborskij
Conference on Neural Information Processing Systems (NeurIPS), 2021.
[PDF]
[Bibtex]
@inproceedings{richards2021stability,
title={Stability \& Generalisation of Gradient Descent for Shallow Neural Networks without the Neural Tangent Kernel},
author={Richards, D. and Kuzborskij, I.},
booktitle={Neural Information Processing Systems (NeurIPS)},
year={2021}
}
On the Role of Optimization in Double Descent: A Least Squares Study
I. Kuzborskij,
Cs. Szepesvári,
O. Rivasplata,
A. Rannen Triki,
and
R. Pascanu
Conference on Neural Information Processing Systems (NeurIPS), 2021.
[PDF]
[Bibtex]
@inproceedings{kuzborskij2021role,
title={On the Role of Optimization in Double Descent: A Least Squares Study},
author={Ilja Kuzborskij and Csaba Szepesvári and Omar Rivasplata and Amal Rannen-Triki and Razvan Pascanu},
booktitle={Neural Information Processing Systems (NeurIPS)},
year={2021}
}
A Distribution-dependent Analysis of Meta Learning
M. Konobeev, I. Kuzborskij, and Cs. Szepesvári
International Conference on Machine Learning (ICML), 2021.
[PDF]
[Bibtex]
[Code]
@inproceedings{konobeev2020statistical,
title = "{A Distribution-dependent Analysis of Meta Learning}",
author = {Konobeev, Mikhail and Kuzborskij, Ilja and Szepesvári, Csaba},
booktitle = {International Conference on Machine Learning},
year = {2021}
}
Confident Off-Policy Evaluation and Selection through Self-Normalized Importance Weighting
I. Kuzborskij,
C. Vernade,
A. György, and
Cs. Szepesvári
International Conference on Artificial Intelligence and Statistics (AISTATS), 2021.
[PDF]
[Bibtex]
[Code]
@InProceedings{pmlr-v130-kuzborskij21a,
title = { Confident Off-Policy Evaluation and Selection through Self-Normalized Importance Weighting },
author = {Kuzborskij, Ilja and Vernade, Claire and Gyorgy, Andras and Szepesvari, Csaba},
booktitle = {Proceedings of The 24th International Conference on Artificial Intelligence and Statistics},
year = {2021}
}
Locally-Adaptive Nonparametric Online Learning
I. Kuzborskij and N. Cesa-Bianchi
Conference on Neural Information Processing Systems (NeurIPS), 2020.
[PDF]
[Bibtex]
@inproceedings{kuzborskij2020locally,
title = {Locally-{A}daptive {N}onparametric {O}nline {L}earning},
author = {Kuzborskij, Ilja and Cesa-Bianchi, Nicol\`{o}},
booktitle= {Neural Information Processing Systems (NeurIPS)},
year = {2020}
}
PAC-Bayes Analysis Beyond the Usual Bounds
O. Rivasplata
I. Kuzborskij,
Cs. Szepesvári, and
J. Shawe-Taylor
Conference on Neural Information Processing Systems (NeurIPS), 2020.
[PDF]
[Bibtex]
@inproceedings{rivasplata2020pac,
title = {{PAC}-{B}ayes {A}nalysis {B}eyond the {U}sual {B}ounds},
author={Rivasplata, O. and Kuzborskij, I. and Szepesv{á}ri, Cs. and Shawe-Taylor, J.}
booktitle= {Neural Information Processing Systems (NeurIPS)},
year = {2020}
}
Distribution-Dependent Analysis of Gibbs-ERM Principle
I. Kuzborskij, N. Cesa-Bianchi, and Cs. Szepesvári
Conference on Learning Theory (COLT), 2019.
[PDF]
[Bibtex]
@InProceedings{pmlr-v99-kuzborskij19a,
title = {Distribution-Dependent Analysis of Gibbs-ERM Principle},
author = {Kuzborskij, Ilja and Cesa-Bianchi, Nicol\`{o} and Szepesvári, Csaba},
booktitle = {Proceedings of the Thirty-Second Conference on Learning Theory},
pages = {2028--2054},
year = {2019},
editor = {Beygelzimer, Alina and Hsu, Daniel},
volume = {99},
series = {Proceedings of Machine Learning Research},
address = {Phoenix, USA},
month = {25--28 Jun},
publisher = {PMLR},
pdf = {http://proceedings.mlr.press/v99/kuzborskij19a/kuzborskij19a.pdf},
url = {http://proceedings.mlr.press/v99/kuzborskij19a.html}
}
Efficient Linear Bandits through Matrix Sketching
I. Kuzborskij, L. Cella, and N. Cesa-Bianchi
International Conference on Artificial Intelligence and Statistics (AISTATS), 2019.
[PDF]
[Bibtex]
@inproceedings{kuzborskij2019efficient,
title = {Efficient {L}inear {B}andits through {M}atrix {S}ketching},
author = {Kuzborskij, Ilja and Cella, Leonardo and Cesa-Bianchi, Nicol\`{o}},
booktitle = {Proceedings of Machine Learning Research},
pages = {177--185},
year = {2019},
editor = {Chaudhuri, Kamalika and Sugiyama, Masashi},
volume = {89},
series = {Proceedings of Machine Learning Research},
address = {},
month = {16--18 Apr},
publisher = {PMLR},
pdf = {http://proceedings.mlr.press/v89/kuzborskij19a/kuzborskij19a.pdf},
url = {http://proceedings.mlr.press/v89/kuzborskij19a.html}
}
Data-Dependent Stability of Stochastic Gradient Descent
I. Kuzborskij and C. H. Lampert
International Conference on Machine Learning (ICML), 2018.
[PDF]
[Bibtex]
@inproceedings{kuzborskij2017data,
title={{D}ata-{D}ependent {S}tability of {S}tochastic {G}radient {D}escent},
author={I. Kuzborskij and C. H. Lampert},
booktitle = {International Conference on Machine Learning (ICML)},
year={2018}
}
Nonparametric Online Regression while Learning the Metric
I. Kuzborskij and N. Cesa-Bianchi
Advances in Neural Information Processing Systems (NeurIPS), 2017.
[PDF]
[Bibtex]
@inproceedings{kuzborskij2017nonparametric,
title={{N}onparametric {O}nline {R}egression while {L}earning the {M}etric},
author={I. Kuzborskij and N. Cesa-Bianchi},
booktitle= {Neural Information Processing Systems (NIPS)},
year={2017}
}
Fast Rates by Transferring from Auxiliary Hypotheses
I. Kuzborskij and F. Orabona
Machine Learning, September, 2016.
[PDF]
[Bibtex]
@article{kuzborskij2016fast,
author={I. Kuzborskij and F. Orabona},
title={Fast {R}ates by {T}ransferring from {A}uxiliary {H}ypotheses},
journal="Machine Learning",
year=2016,
pages="1--25",
issn="1573-0565",
doi="10.1007/s10994-016-5594-4",
url="http://dx.doi.org/10.1007/s10994-016-5594-4"
}
I. Kuzborskij, F. Orabona, and B. Caputo
Computer Vision and Image Understanding, 2016.
[PDF] [Bibtex]
@article{kuzborskij2016scalable,
author = {I. Kuzborskij and
F. Orabona and
B. Caputo},
title = {Transfer {L}earning through {G}reedy {S}ubset {S}election},
journal = "Computer Vision and Image Understanding ",
volume = "",
number = "",
pages = " - ",
year = "2016",
issn = "1077-3142",
doi = "http://dx.doi.org/10.1016/j.cviu.2016.09.003",
url = "http://www.sciencedirect.com/science/article/pii/S1077314216301370",
}
When Naïve Bayes Nearest Neighbors Meet Convolutional Neural Networks
I. Kuzborskij, F.M. Carlucci, and B. Caputo
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
[PDF]
[Bibtex]
[Code]
[Supplementary material]
@inproceedings{kuzborskij2016when,
title={{W}hen {N}aive {B}ayes {N}earest {N}eighbours
{M}eet {C}onvolutional {N}eural {N}etworks},
author={Kuzborskij, I. and Carlucci, F. M. and Caputo, B.},
booktitle={Computer Vision and Pattern Recognition (CVPR), 2016 IEEE Conference on},
year={2016}
}
Transfer Learning through Greedy Subset Selection
(best paper award)
I. Kuzborskij, F. Orabona, and B. Caputo
International Conference on Image Analysis and Processing (ICIAP), 2015.
[PDF]
[Bibtex]
[Code]
@inproceedings{kuzborskij2015transfer,
author = {I. Kuzborskij and
F. Orabona and
B. Caputo},
title = {Transfer Learning Through Greedy Subset Selection},
booktitle = {Image Analysis and Processing - {ICIAP} 2015 - 18th International
Conference, Proceedings, Part
{I}},
pages = {3--14},
year = {2015},
}
Stability and Hypothesis Transfer Learning
I. Kuzborskij and F. Orabona
International Conference on Machine Learning (ICML), 2013.
[PDF]
[Bibtex]
[Errata]
@inproceedings{kuzborskij2013stability,
author = {I. Kuzborskij and
F. Orabona},
title = {Stability and {H}ypothesis {T}ransfer {L}earning},
booktitle = {International Conference on Machine Learning (ICML)},
pages = {942--950},
year = {2013}
}
From N to N+1: Multiclass Transfer Incremental Learning
I. Kuzborskij, F. Orabona, and B. Caputo
Conference on Computer Vision and Pattern Recognition (CVPR) 2013.
[PDF]
[Bibtex]
[Code]
[Supplementary material]
@inproceedings{kuzborskij2013from,
title = {From {N} to {N}+1: {M}ulticlass {T}ransfer {I}ncremental {L}earning},
author = {Kuzborskij, I. and Orabona, F. and Caputo, B.},
booktitle={Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on},
pages={3358--3365},
year={2013},
organization={IEEE}
}
Other topics
Characterization of a Benchmark Database for Myoelectric Movement Classification.
M. Atzori, A. Gijsberts, I. Kuzborskij, S. Elsig, A.-G. Mittaz Hager, O. Deriaz,
C. Castellini,
H. Muller,
B. Caputo
Transactions on Neural Systems and Rehabilitation Engineering, 2015.
[PDF]
[Bibtex]
@article{atzori2015characterization,
title={Characterization of a {B}enchmark {D}atabase for
{M}yoelectric {M}ovement {C}lassification},
author={Atzori, M. and Gijsberts, A. and Kuzborskij, I. and
Elsig, S. and Mittaz Hager, A.-G. and Deriaz, O. and
Castellini, C. and Muller, H. and Caputo, B.},
journal={Neural Systems and Rehabilitation Engineering, IEEE Transactions on},
volume={23},
number={1},
pages={73--83},
year={2015},
publisher={IEEE}
}
On the Challenge of Classifying 52 Hand Movements from Surface Electromyography.
I. Kuzborskij, A. Gijsberts, B. Caputo
International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2012.
[PDF]
[Bibtex]
@inproceedings{kuzborskij2012challenge,
title={On the {C}hallenge of {C}lassifying 52 {H}and {M}ovements from
{S}urface {E}lectromyography},
author={Kuzborskij, I. and Gijsberts, A. and Caputo, B.},
booktitle={Engineering in Medicine and Biology Society (EMBC),
2012 Annual International Conference of the IEEE},
pages={4931--4937},
year={2012},
organization={IEEE}
}